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Major Talking Points

* Pacific ARs are critical phenomena impacting
the West Coast of North America

— formation and physical processes
— contribution to water supply
— contribution to flooding

e QOutstanding Forecast Challenges
— Classifying strength of AR offshore
— QPF for land-falling ARs still poor
— Snow-level forecasts for the mountains
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A Key Finding:

atmospheric rivers produce
extreme precipitation and
flooding, as well as water supply
and stream flow on the U.S. West
Coast

Examples of AR events that
produced extreme precipitation
on the US West Coast, and
exhibited spatial continuity with
the tropical water vapor reservoir
as seen in SSM/I satellite
observations of IWV.




Zhu & Newell (in Monthly Weather Review, 1998) concluded that
1) Most water vapor transport occurs in only a few narrow regions

2) There are 4-5 of these within a hemisphere at any one moment

3) They are part of extratropical cyclones and move with the “storm track”
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Coined the term “atmospheric river”
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Atmospheric Rivers, Floods and the Water Resources of California

by Mike Dettinger, Marty Ralph, , Tapash Das, Paul Neiman, Dan Cayan
Water, 3, 445-478 (2011)
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Moisture flux in ARs is the key, but offshore
winds are difficult to diagnose and forecast

Source: NARR
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When atmospheric rivers strike coastal mountains (Ralph et al. 2003)
» Details (e.g., wind direction) of the atmospheric river determine which
watersheds flood



Diagnosis of an Intense Atmospheric River Impacting the Pacific Northwest:
Storm Summary and Offshore Vertical Structure Observed with COSMIC Satellite Retrievals

by Paul J. Neiman, F. Martin Ralph, Gary A. Wick, Y.-H. Kuo, T.-W. Wee, Z. Ma, G. H. Taylor, M.D. Dettinger
Monthly Weather Review, 136, 4398-4420.

SSM/I satellite imagery Global reanalysis melting-level
of integrated water vapor (IWV, cm) anomaly (hPa; rel. to 30-y mean)
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The AR is located near the leading Melting level ~4000 ft (1.2 km) above
“edge of a cold front, with strong vapor normal across much of the PacNW
fluxes (as per reanalysis diagnostics) during the landfall of this AR




Thresholds in water vapor and wind are key in
determining heavy hourly rainfall

 The next 4 graphs each show 8 winters of hourly
observations from an atmospheric river
observatory near Bodega Bay operated in HMT.
 Over 18,000 hourly measurements of

— Water vapor

— Winds at 1 km above sea level

— Coastal mountain rainfall

e Conclusions are that the heaviest hourly rain
rates occur when

— Water vapor (IWV) exceeds 2 cm, and
— Upslope winds at 1 km altitude exceed 12 m/s
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*Nearly 2/3 of tropospheric water vapor is in the lowest 2 km MSL.
Hence, to first order, the IWV flux provides a close estimate
of the low-level water-vapor transport into the coastal mountains.




Physical variables required for extreme
precipitation (including AR conditions)

 Wind in the controlling layer near 1 km MSL
— speed > 12.5 m/s

— direction (determines location of rain shadow)

* Water vapor content

— vertically integrated water vapor (IWV) > 2 cm

e Show level

— Above top of watershed
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Prototype forecast tool tested at 3 CA couplets during NOAA’s HMTs

0030Z 5-Jan-08: Intense western U.S. storm
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Summary

 Weather Issues Surrounding Ars:

— Lead time and preparation for emergency managers key to

saving lives and property
e 7-10 day outlook desired for high impact hydrologic events
* Forecast-coordinated reservoir operations a possible outcome

— Knowing when MJO will or will not provide forcing mechanism
for AR’s and how to determine impact locations.

* Minimize false alarm rates
* How well are ARs and the major precipitation events
associated with them, represented in global and regional
simulation and forecast models?
— Timing, location and duration beyond 12-hrs poor

 QPF for land-falling ARs still very problematic

— Models in short term seem to handle thermodynamics and
kinematics within the AR OK but very poor in getting
condensate to the ground

— Clouds much more efficient at forming precipitation than
models understand

* Role of aerosols




Thank You {

 For more information, please see:

— http://hmt.noaa.gov/
— http://www.esrl.noaa.gov/psd/atmrivers/




